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Abstract
We use the classical version of the density-functional theory in the weighted-
density approximation to build up the entire phase diagram and the interface
structure of a two-dimensional lattice-gas model which is known, from previous
studies, to possess three stable phases—solid, liquid, and vapour. Following
the common practice, the attractive part of the potential is treated in a mean-
field-like fashion, although with different prescriptions for the solid and the
fluid phases. It turns out that the present theory, compared to similar theories
in the continuum, is of worse quality. Nevertheless, at least a number of
qualitative facts are reproduced correctly: (i) the existence of three phases;
(ii) the disappearance of the liquid phase when the range of the attraction
is progressively reduced; and (iii) the intrusion, just below the triple-point
temperature, of a liquid-like layer at the interface between the coexisting solid
and vapour phases.

1. Introduction

Nowadays, most of the theoretical studies of the phase behaviour of a classical fluid are
formulated in the language of the density-functional theory (DFT) [1, 2]. Within such a theory,
the crystalline solid is viewed as being like an inhomogeneous system with a periodically
modulated density profile n(x), whose free energy is obtained through the optimization of a
density functional F[n] which is built upon the structural properties of the fluid. In particular,
a successful recipe for F[n] (sometimes called the Hohenberg–Kohn–Mermin (HKM) free
energy) is a local mapping into the free energy of a homogeneous fluid with a suitably chosen
effective density n̄(x), which is related in a non-local way to the real density n(x). At variance
with n(x), the smoothed density n̄(x) is a slowly varying function of the position. This general
method has been named the ‘weighted-density approximation’ (WDA) [3, 4].
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This scheme has proved to be sufficient for purely hard-core systems and soft repulsive
ones. However, it fails badly in the presence of attractive interactions, where it may happen that
the solid is being mapped onto a fluid with a density falling into the condensation gap where,
actually, no homogeneous phase is present. Nor can the fundamental-measure approach of
Rosenfeld [5], which was recently extended from hard spheres [5, 6] to spherically repulsive
interactions [7] but not yet to attractive fluids, be of help. In these cases, the only available
method is lowest-order perturbation theory [1], which is tantamount to splitting the HKM free
energy into a sum of the density functional for a reference system (usually, a hard-core system)
and a remainder, containing the pair distribution function of the inhomogeneous reference
system. A sensible approximation for the latter would allow one to draw accurate coexistence
lines for the system under consideration. In the past, a scheme of this sort has been successfully
applied by a number of authors to the prototypical case represented by the truncated Lennard-
Jones fluid [8–12].

In the present paper, we prove that this method is effective, although with less quantitative
success, also for lattice problems. As a case study, we shall focus on a two-dimensional (2D)
lattice-gas system which is known [13] to possess three phases with the features of vapour,
liquid, and solid. It is argued in [13] that the existence in this model of a further liquid phase,
besides the gaseous one, is made possible by the relatively long range of the interparticle
attraction. We point out that the choice of a 2D (rather than 3D) system is only aimed at
simplifying the forthcoming analysis of the interface problem. In this respect, a crucial test for
our DFT will be the prediction of surface melting, which is actually in the range of possibilities
of the DFT, as is proved by the 3D continuum theory of [11].

While the general DFT framework on a lattice (i.e., minimum principle for the generalized
grand potential plus Ornstein–Zernike (OZ) relation) is already known [14, 15], we are not
aware of any single example of the application of the lattice DFT in the WDA for a system
with a realistic phase diagram. We believe that testing the degree of sophistication of the
lattice-DFT method in a rich context, such as that provided by a three-phase lattice-gas model,
can be interesting on fairly general grounds, e.g. for weighing up the superiority, if any, of the
DFT over other available statistical methods such as the transfer-matrix [13] and the cluster
variational methods [16].

This paper is arranged as follows. After giving an outline, in section 2, of the main contents
of the lattice DFT, we describe our system and method in section 3, and present our results for
the bulk of the system in section 4. Next, in section 5, we analyse the structure of the interface
between two bulk phases, including a demonstration of the phenomenon of surface melting.
Further remarks and a brief summary of the main results are given in the conclusions.

2. Lattice density-functional theory

We first review the lattice analogue of the classical DFT, which was first considered by
Nieswand et al [14]. Like the parent theory in the continuum, the lattice DFT is meant to
provide a general framework for discussing the statistical properties of particles existing on a
regular lattice, in the presence of a site-dependent external potential or, even, of a self-sustained
spatial inhomogeneity (like the one which, in a simple fluid, becomes manifest at freezing). If
lattice sites are allowed to be occupied by at most one particle, a general Hamiltonian for our
problem is H +

∑
i εi ci , with

H =
∑
i< j

v(|i − j |)cic j . (1)
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We call ci = 0, 1 the occupation number of site i in the lattice, while v(|i − j |) and εi are the
pair interaction and the external potential, respectively.

The grand-canonical partition function

� =
∑
{c}

exp

(
β

∑
i

(µ − εi )ci

)
exp(−β H ) (2)

(with β and µ representing the inverse temperature and the chemical potential, respectively) is
a lattice functional, namely a function of all components µi = µ − εi of a lattice field, which
we call the external field. Then, it is a simple matter to show that the (number-) density field
is given by

ni ≡ 〈ci 〉 = 1

�

∂�

∂βµi
= − ∂�

∂µi
, (3)

which is a functional of the external field (a temperature dependence is also implied).
� = −β−1 ln � is the grand potential, also a functional of {µi}. At variance with the continuum
case, the density field is a partial, rather than a functional, derivative of �.

The HKM theorem, which holds also for lattice gases, ensures that there is a one-to-one
correspondence, within the space of µ-representable densities, between the density field and
the external field. Thanks to this theorem, the Legendre transform of �[µ] with respect to its
functional variable is a well-defined object, which generalizes the concept of Helmholtz free
energy to inhomogeneous situations:

F[n] = �[µ] +
∑

i

µi ni

∣∣∣
µi =µi [n]

. (4)

Another expression for F[n] is obtained by considering

π[n] = 1

�
exp

(
β

∑
i

µi [n]ci

)
exp(−β H ) (5)

(with � evaluated at µi [n]), which represents the grand-canonical probability density for the
given n, i.e., the one calculated for µi = µi [n]. It follows that

F[n] =
∑
{c}

π[n]

(
H +

1

β
ln π[n]

)
. (6)

In practice, the ideal-gas system (H = 0) is the only lattice system for which the computation
of the HKM free energy can be carried out explicitly, with the result

β Fid [n] =
∑

i

[ni ln ni + (1 − ni) ln(1 − ni )]. (7)

In the general case, F[n] is written as the sum of the ideal term and an excess contribution
Fexc[n] which is to be approximated in some way.

A further density functional can be defined from F[n], which is a sort of generalized grand
potential:

�µ[ρ] = F[ρ] −
∑

i

µiρi =
∑
{c}

π[ρ]

(
H +

1

β
ln π[ρ] −

∑
i

µi ci

)
, (8)

where a different symbol, ρ, is used for the density field to stress the fact that no relation is
implied between ρ and µ, which should thus be regarded as independent functional variables.
Instead, we reserve the symbol n for the density field derived from µ.

�µ[ρ] is actually the inhomogeneous Gibbs–Bogoliubov functional of the classical mean-
field theory. Hence, a minimum principle holds, saying that �µ[ρ] attains its minimum value
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for a density profile which is precisely the one determined by the given external field, namely n.
Moreover, the minimum �µ[n] is nothing but the grand potential � for the given µ. The
necessary condition for the minimum reads

∂�µ

∂ρi

∣∣∣∣
ρi =ni

= 0. (9)

The minimum principle for �µ[ρ] is, besides the HKM theorem, the basic tenet of the DFT,
being at the heart of a broad family of approximate theories of freezing [2]. Every such a
theory starts from a prescription for F[n], which is then used to determine an approximate
grand potential for the system from which the thermodynamic properties are deduced.

We conclude our general presentation of the lattice DFT with the OZ relation. Taking

c(1)

i [n] = −β
∂ Fexc

∂ni
and c(2)

i j [n] = ∂c(1)
i

∂n j
(10)

to be the one- and two-point direct correlation function (DCF), respectively, the formal solution
of equation (9) reads

ni = 1

1 + exp{−βµi − c(1)
i [n]} . (11)

Upon introducing the reduced pair distribution function (PDF),

gi j = (1 − δi j)
〈ci c j 〉
ni n j

, (12)

and a further function

Ci j = c(2)
i j − δi j

1 − ni
, (13)

it can be shown [14] that the following relation follows from equation (11):

hi j = Ci j +
∑

k

Ciknkhk j , (14)

which is the lattice OZ relation (hi j = gi j − 1 is called the total correlation function). Only
a further relation between g and c(2) would allow one to determine both functions. The
importance of c(2) is twofold: on one hand, its knowledge permits one to recover, through the
OZ relation, the PDF profile. On the other hand, most of the popular DFT approximations use
an expression for F[n] in terms of the DCF of the fluid.

A number of simplifications occur for a homogeneous system (i.e., one with ε = 0).
Owing to translational symmetry, the one-point DCF is a constant, c(1)

i [n] = c1(ρ), whereas
the two-point DCF is a function of i − j only, that is c(2)

i j [n] = c2(i − j, ρ). Furthermore,

equation (14) can be Fourier transformed2 to give h̃q = ∑
x hx exp(−iq · x) in terms of C̃q as

h̃q = C̃q

1 − ρC̃q

, (15)

ρ being the constant value of the density.
In the next section, we describe a DFT aimed at reconstructing the phase diagram of a

realistic lattice gas, that is one with a phase diagram containing, besides a solid phase, also
2 On a finite Nx × Ny lattice, the use of periodic boundary conditions makes it possible to expand every field fx

in a (Fourier) series of complex exponentials: f̃q = ∑
x fx exp(−iq · x), where the Born–Von Karman vectors

q = qx bx + qyby . The vectors bx and by form a basis of the reciprocal lattice and, e.g., qx = mx /Nx with
mx = −(Nx /2) + 1, . . . , Nx /2. The inverse relation is fx = (1/N)

∑
q f̃q exp(iq · x), N = Nx Ny being the number

of lattice sites. A useful property is the convolution theorem (̃ f ∗ g)q = f̃q g̃q , where ( f ∗ g)x = ∑
y fx−ygy .
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two different fluid phases, liquid, and vapour. In order to condense the discussion, we have
decided to confine most of the technicalities to a few appendices. In particular, appendix A
illustrates the lattice counterpart of two celebrated, yet simple, theories of freezing: the
Ramakrishnan–Yussouff (RY) theory and the Tarazona WDA. We suggest reading appendix A
before proceeding to the next section.

3. Model and method

We shall work with the t345 model of [13]. This is a triangular-lattice model with a hard core
covering first- and second-neighbour sites and a pair attraction ranging from third- to fifth-
neighbour sites (see figure 1 of [13]). The strength of the attraction reduces upon increasing
the distance from a reference site: whence, a triangular solid is stable at high density and
low temperature, with a maximum density of ρmax = 0.25. Upon comparing the solid and
the vapour grand potentials, one can easily predict the zero-temperature value of the chemical
potential at coexistence to be µc(T = 0) = 3v3, v3 < 0 being the pair-potential value at
contact. To be specific, we use hereafter the same v-values as were considered in [13], namely
v3 = −1.5V , v4 = −1.2V , and v5 = −V , with V > 0. In that paper, a combination of
transfer-matrix calculations and Monte Carlo (MC) simulations distinctly showed the existence
of a narrow temperature interval where the increase of µ, starting from large negative values,
drives the system through a couple of sharp (first-order) phase transitions, i.e., vapour–liquid
and liquid–solid, as is also revealed by the µ-evolution of the number-density histogram at
fixed temperature. For later convenience, two other models are introduced: the t3 model,
which is the same as t345 but with v4 = v5 = 0, and the t model, where also v3 = 0 and
only the hard-core interaction is present. At variance with the t345 case, the MC simulation
supports the existence of a unique fluid phase in both the t and t3 models.

The first step in a typical DFT calculation is the determination of an accurate DCF for the
homogeneous system. In fact, an approximate F[n] is usually built upon this function (see
appendix A). The fluid DCF is the solution to the homogeneous OZ relation plus a closure.
For 3D hard spheres, the most celebrated closure of all is the Percus–Yevick approximation
(PYA), which allows an exact determination of the DCF [17]. For a lattice system, the mean-
spherical approximation (MSA) is easier to implement than the PYA, since it leads to a smaller
set of unknown quantities. As a matter of fact, serious convergence problems are encountered
when trying to solve numerically either the MSA or the PYA of the t345 fluid. Instead, no such
problems occur for the MSA of the t or, even, the t3 model (see the details in appendix B), while
the PYA of the t3 model is still intractable. As a result, we are forced to treat the t345 model
perturbatively, as we are going to see in a moment (note that our derivation of the perturbation
formula, equation (16) below, will be different from that of Evans [1]).

Let us write v(|i − j |) as v0(|i − j |)+ 	v(|i − j |), where v0 describes a reference system,
say the t model, and 	v is a remainder. We shall prove that, using a 0 subscript for quantities
pertaining to the t model, one has, at the lowest order in β,

F[n] = F0[n] +
∑
i< j

	v(|i − j |) 〈cic j 〉0. (16)

Let vλ = v0 + λ	v be a linear path between v0 and v, with 0 � λ � 1. Accordingly, we
define Hλ = H0 +λ	H . Let πλ[n] be the grand-canonical probability density of Hλ under the
condition that the external field takes precisely that value, {µλi [n]}, which produces a density
of n. Next, we define

Fλ[n] =
∑
{c}

πλ[n]

(
Hλ +

1

β
ln πλ[n]

)
(17)

to be the HKM free energy relative to Hλ.
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In the same spirit as classical Zwanzig perturbation theory [17], we derive an approximate
expression for F[n] starting from the exact formula

F[n] = F0[n] +
∫ 1

0
dλ

∂ Fλ[n]

∂λ
. (18)

A rather lengthy calculation gives

∂ Fλ[n]

∂λ
= 〈	H 〉λ + β[〈B〉λ〈	H 〉λ − 〈B 	H 〉λ] − β[〈A〉λ〈B〉λ − 〈AB〉λ], (19)

where 〈· · ·〉λ is an average over πλ[n] and

A =
∑

i

∂µλi [n]

∂λ
ci and B =

∑
i

µλi [n]ci . (20)

Considering that µλi [n] is unknown, some assumption must be made in order to obtain F[n].
In particular, if v0 is a hard-core interaction, the rhs of equation (19) reduces, at the lowest
order in β, to 〈	H 〉0, yielding eventually equation (16).

We note that, in equation (16), 〈ci c j 〉0 = ni n j g0,i j [n] contains the exact, yet unknown,
reduced PDF of the inhomogeneous t model. Hence, the above equation is useless unless one
finds a careful prescription for g0,i j , which could be possibly different for the fluid and solid
phases. Before discussing this point further, we go back for a moment to the reference system.

After obtaining the DCF of the homogeneous t system, we use equation (A.3) to calculate
the fluid excess free energy per particle f exc(ρ). This quantity, which is a monotonically
increasing function of the density, ceases to be defined at ρ � 0.21, beyond which no MSA
solution is actually found. However, this density is too small for allowing a description (within
the WDA) of the very dense solid. Hence, the problem arises as to what criterion should be used
in order to extrapolate f exc(ρ) beyond that limit. This problem is discussed in appendix B,
where two different solutions are proposed. Here, suffice it to say that there exists a method for
producing an extension of the definition of f exc(ρ) insofar as it is needed, with all regularity
requirements fully met.

We have sketched in appendix B the details of a simple DFT (the RY theory [18]) for
the freezing of the t model. However, in order to obtain a good description of the reference
system, we have tried to do better than the RY theory. In fact, the stability of the liquid phase is
a matter of a delicate balance between energy and entropy; hence, an accurate representation
of the solid free energy is an obvious necessity in all cases where a liquid phase is expected.
Leaving aside Rosenfeld’s fundamental-measure theory, whose extension to lattice fluids is not
immediate (see, however, the recent contribution [19]), we have applied the lattice counterpart
of the WDA in the version implemented by Tarazona [3], which gives rather good results for
the hard-sphere system. This theory is reviewed in the appendices A (general) and C (t model).
Here, we provide just a few details on the method.

The hypothesis underlying any WDA is an approximation of the excess free energy of the
system as

∑
i ni f exc(n̄i ), where the weighted density n̄i is a non-local functional of the density

field, given implicitly by n̄i = ∑
j n jw(i − j, n̄i). In turn, the weight function w(i − j, ρ) is

such that both the density and the DCF of the fluid are recovered in the homogeneous limit.
In the Tarazona WDA, the further assumption is made that the weight function is a second-
order polynomial in the density ρ. We thus have a well-defined algorithm for building up the
excess free energy and, eventually, the density functional that is used to trace the conditions
for fluid–solid coexistence.

Once the free energy of the reference system is given, we are left with the problem of
incorporating the attraction 	v into the density functional of the t system using equation (16).
We shall distinguish between the fluid and the solid, although this way the HKM functional
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will only approximately be the same for all phases (this will have some harmful consequences
for the interface structure; see section 5). While we obviously use for the fluid the reduced PDF
of the homogeneous t system, as far as the solid is concerned we shall make the (apparently
bad) approximation g0,i j [n] = 1 outside the core, which is the same assumption as the mean-
field approximation (MFA). In fact, we agree with Mederos et al [10] that the PDF of the
low-temperature solid is trivial, since all the structure (which in a fluid is accounted for by
the reduced PDF) is already present at the level of ni itself3. This is rather obvious at T = 0,
where gi j = 1 at the typical distances of the perfect solid, while being undefined elsewhere. For
small, but non-zero temperatures, a quasi-random (ideal-gas-like) distribution of interstitials
and vacancies would extend the result gi j � 1 to all distances outside the core region.

A more refined approximation for the attractive interaction would be that of [10]. This
theory uses the same prescription for the solid and the fluid, based on the use of the
compressibility sum rule. However, the implementation of this method is also very difficult
and much more involved than ours. In particular, the two algorithms for minimization that are
described in appendix B do both require the numerical evaluation of the density derivatives of
the DFT functional, which is indeed a very difficult task to accomplish if the recipe of [10]
is followed. For the sake of completeness, we have also attempted to use the method of [8].
This relies on two approximations: (i) the use of equation (16) for the t345 fluid; and (ii) the
decomposition of the DCF of the inhomogeneous t345 system as the sum of the analogous
function for the t system and a remainder 	c2(i − j, ρ), assumed to be zero inside the core
and MSA-like outside this region. In fact, we found no stable liquid phase by this method.

Going back to our theory, we write the difference in grand potential between the triangular
solid (whose density field can be parametrized by means of two numbers only; see below) and
the fluid with equal T and µ as the minimum of

	�(n A, nB) = 	�(t)(n A, nB ) +
N

4
kB T

{
3βv3n2

A + (12βv4 + 6βv5)n AnB

+ (9βv3 + 12βv4 + 6βv5)n
2
B − 2ρ2

5∑
n=3

znβvn g0(n, ρ)

−
(

ρ

5∑
n=3

znβvn g0(n, ρ) +
ρ2

2

5∑
n=3

znβvn
dg0(n, ρ)

dρ

)
(n A + 3nB − 4ρ)

}
. (21)

Note that, in the above equation:

(i) n A and nB are the number densities in the sublattices A and B of occupied and unoccupied
sites, respectively (see appendix B);

(ii) 	�(t) is the functional for the t model, defined at equation (C.1);

(iii) zn is the coordination number for the nth shell, that is z3 = 6, z4 = 12, and z5 = 6; and

(iv) g0(n, ρ) is the value taken by the reduced PDF of the t fluid at the nth-neighbour separation.

Apart from a different density dependence in 	�, the machinery needed for calculating the
weighted densities n̄ A and n̄B (and their derivatives) from the densities n A and nB remains the
same as for the t model, illustrated in appendix C.

3 It is clear that what we are referring to here as a ‘solid’ is just one of the four symmetry-related ergodic components
which characterize the very dense system, i.e., the broken-symmetry phase which is singled out after choosing a
condensation seed. Otherwise, the solid phase itself would be homogeneous.
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The equations for n A and nB are then (see, for comparison, equations (C.2))

n−1
A = 1 +

1 − ρ

ρ
exp

{
c1(ρ) + β f exc(n̄ A) + n Aβ f exc′(n̄ A)

∂ n̄ A

∂n A
+ 3nBβ f exc′(n̄B)

∂ n̄B

∂n A

−
[
ρ

∑
n

znβvn g0(n, ρ) +
ρ2

2

∑
n

znβvn
dg0(n, ρ)

dρ

]

+ 6βv3n A + (12βv4 + 6βv5)nB

}
;

n−1
B = 1 +

1 − ρ

ρ
exp

{
c1(ρ) + β f exc(n̄B) +

1

3
n Aβ f exc′(n̄ A)

∂ n̄ A

∂nB
+ nBβ f exc′(n̄B)

∂ n̄B

∂nB

−
[
ρ

∑
n

znβvn g0(n, ρ) +
ρ2

2

∑
n

znβvn
dg0(n, ρ)

dρ

]

+ (4βv4 + 2βv5)n A + (6βv3 + 8βv4 + 4βv5)nB

}
. (22)

In appendix B, we have outlined two different numerical algorithms for solving the minimum
problem for a functional of the kind of (21).

We conclude our survey of the method with a few words about the liquid–vapour phase
transition in the t345 model. The generalized grand potential of the homogeneous t345 system
is �µ(ρ) = F(ρ) − Nµρ ≡ N(a(ρ) − µρ), where

βa(ρ) = ρ ln ρ + (1 − ρ) ln(1 − ρ) + ρβ f exc(ρ) + 1
2ρ2

5∑
n=3

znβvn g0(n, ρ). (23)

At low enough temperature, there exists an interval of µ-values where there are two distinct
minima of �µ(ρ), corresponding to the competing vapour and liquid phases (while the
deeper minimum yields the physical solution, the other is associated with a metastable state).
In particular, if we call ρv and ρl the related densities, the coexistence of the two phases occurs
when the minima are equal:

�µ(T, ρv) = �µ(T, ρl) and �′
µ(T, ρv) = �′

µ(T, ρl) = 0. (24)

The above equations are easily identified with the thermodynamic conditions for phase
coexistence, i.e., equal values of T , P (the pressure), and µ for the two phases. This will
automatically give rise to the Maxwell construction for the pressure and will also provide
the right position for cutting the non-monotonic profile a′(ρ) of the chemical potential as a
function of the density.

4. DFT results: bulk

In this section, we present the results that we have obtained for the bulk properties of the
t345 model by the lattice-DFT method outlined in the previous section. In order to check
them, we have resorted to the MC simulation. In a typical grand-canonical MC experiment,
a lattice-gas system is driven to equilibrium by a series of moves (creation or annihilation of
one particle at a time), which are designed in such a way as to satisfy detailed balance (for
more details, the reader is referred to [13]). In particular, a first-order transition is located at
those values of T and µ where the number-density histogram of a large system sample shows
two peaks of equal height, signalling that two distinct phases are equally stable.

We first review our results for the t model. We have formulated two different DFTs for
the freezing of this model, i.e., the RY theory and the WDA of Tarazona. While the results of
the former are discussed in appendix B, an outline of the latter can be found in appendix C.
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Figure 1. The t model (MSA + WDA). Left panel: total density (ρ in the fluid phase, ns in the
solid phase) versus reduced chemical potential. The sublattice densities, n A and nB (dotted lines),
are also plotted in the solid region. Right panel, solid region: the weighted densities, n̄ A and n̄B ,
versus reduced chemical potential (we have used E1 for extending the definition of f exc(ρ) beyond
ρ = 0.21).

Both theories rely on a MSA description for the fluid. Within the WDA theory, the densities
of the coexisting fluid and solid are found to be ρ f = 0.1335 and ρs = 0.1686—whence, a
considerably larger density jump is predicted at the transition than given by the RY theory.
Anyway, these numbers are still very far from those obtained by MC, i.e., ρ f = 0.172(1)

and ρs = 0.188(1), indicating that the instability of the t fluid against the solid is strongly
anticipated in the WDA. As for the chemical-potential value at coexistence, the agreement with
MC is also poor: while the WDA gives (through equations (A.4) and (A.5)) µc = 1.2655V ,
MC yields instead µc = 1.725(5)V .

In figure 1, the local and the weighted density of the t model are separately plotted for the
two sublattices as a function of the chemical potential. In particular, the weighted density takes
its larger value in the interstitial region, that is in the B sublattice. This is a counterintuitive
effect which, however, is not peculiar to the lattice, being also found in the continuum (see,
for instance, [4]).

Moving to the t345 model, we first checked the existence of two distinct fluid phases
at low temperature. The liquid–vapour coexistence line is drawn by solving equations (23)
and (24) (see figure 2). This gives a critical point at tcr = 1.27(1) and ρcr = 0.079(2)

(hereafter, reduced units t = kT/V are used for the temperature). Also shown in figure 2 is
the coexistence line as predicted by the MFA. The latter also uses equation (23), but with a 1
in place of g0(n, ρ).

Finally, we have minimized the density functional (21) in order to obtain the freezing and
melting lines of the t345 model. It is right at this point that the choice between E1 and E2 (for
extrapolating f exc(ρ) beyond ρ = 0.21, see appendix B) becomes crucial. In fact, while the
solid phase never becomes stable—below a certain temperature—if E1 is adopted, we never
run into trouble if extrapolation E2 is used. Anyway, E2 gives practically the same results as
E1 at high temperature.
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Figure 2. The phase diagram of the t345 model, using the t model (MSA + WDA) as a reference.
Two distinct approximations for the perturbation part are compared through the respective phase
diagrams: equation (21) (◦) versus the MFA (×). The freezing and melting lines are constructed
through the use of E1 at high T and of E2 at low T . For comparison, we show as asterisks some
MC data points for a 48 × 48 lattice (MC averages are taken over 5 × 105 equilibrium sweeps; the
errors affecting these points are of the same size as the symbols). The lines connecting the points
are just a guide for the eye. The arrows pointing downwards mark the densities of the coexisting
fluid and solid in the t model, as drawn from MSA + WDA. The other arrows mark the MC values
for the same quantities.

The complete DFT phase diagram of the t345 model is plotted in figure 2 (open circles),
together with the results of the MFA (crosses) and MC simulation (asterisks). To our
delight, a triple point eventually shows up in the t345 phase diagram, at ttr = 1.145(5)

and ρtr = 0.122(1), as long as different forms of the perturbation part are used in the HKM
functional for the solid and for the fluid. In other words, the use of g0 for the description of
the reduced PDF of the fluid turns out to be essential for obtaining a liquid region in the phase
diagram. The liquid phase is unstable if the MFA is used also for the fluid. However, the
agreement of our DFT with the MC results is mainly qualitative: the exact coordinates of the
triple point are very different, t MC

tr = 0.87(1) and ρMC
tr = 0.191(1); only the ratio of ttr to tcr

is similar.
As an example, we have plotted in figure 3 the µ-evolution of the DFT number density at

t = 1.2, upon going across the two phase transitions. Finally, figure 4 shows the DFT phase
diagram of the t345 model in the T –µ plane, where we recognize the typical fork with two
teeth of different length. In the same picture, the MC data points of figure 2 are also reported
for comparison.

We have studied the t3 model with the same DFT as described above in order to check
the internal consistency of our method. For this model, equation (23) with v4 = v5 = 0
never produces two distinct fluid phases, and the freezing and melting lines are similar to those
found by the simpler RY theory (see figure 5). This result can be rationalized as follows: in the
t345 model, the existence of attractive sites at the ‘interstitial’ distances r4 and r5 causes the
upper stability threshold of the fluid phase to move up in density with respect to the t3 model,
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Figure 3. The t345 model (MSA + WDA + perturbation). The picture shows the βµ-evolution
of the overall density—ρ for the fluid and ns = (n A + 3nB )/4 for the solid—along the isotherm
t = 1.2. In the solid region, the real and weighted densities are separately plotted for the two
sublattices A and B as dotted lines (note that nB and n̄ A are almost indistinguishable). The dotted
vertical lines mark the points where the phase transitions occur.

thus contributing to unveiling the triple point. This effect is missing in the t3 model, which
thus fails to become a liquid. The conclusion, in perfect agreement with MC, is that no liquid
phase is present in the t3 model.

Finally, we make a comment on the possible causes of the quantitative failure of our
DFT for the t345 model. On one hand, one generally expects mean-field theory to work
well in 3D, less so in 2D. One should also not forget that the perturbation formula (16) is
a high-temperature approximation and that, at variance with the continuum case, there is no
Barker–Henderson criterion which can be called upon for optimizing the hard-core diameter
of the reference system. On the other hand, the low quality of the MSA for the reference t
fluid is also partly responsible for the wrong position of the freezing and melting lines. To
overcome this problem, we have made an attempt to replace the MSA with the hypernetted-
chain approximation (HNCA) as a closure for the OZ relation of the homogeneous t system. For
this model, the HNCA assumes: (i) h(0) = h(1) = h(2) = −1 (here, the argument is the shell
number); (ii) C(i − j, ρ) = h(i − j, ρ)− ln[1 + h(i − j, ρ)], outside the core. In practice, we
should also assume that C and h are exactly zero beyond a certain distance, and we have chosen
this to be the distance of the 38th neighbours (i.e., 6

√
3). The solution method is iterative: at a

given ρ, we make an initial estimate of C(0), C(1), C(2) and h(3), h(4), . . . , which are then
updated using the inverse of the Fourier transform (15). Unfortunately, however, this works
only up to ρ = 0.11, which is too small a density for allowing us to build an accurate reference-
fluid free energy. Just in order to appreciate the difference between the two OZ closures, we
have plotted in figure 6 the profiles, for ρ = 0.1, of the reduced PDF of the t model as given
by the MSA and by the HNCA, respectively. The comparison with the ‘exact’ MC profile at
the same density reveals the superiority of the MSA over the HNCA, which overestimates the
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Figure 4. The t345 model (MSA + WDA + perturbation). The DFT phase diagram of the
t345 model (◦) as it appears on the T –µ plane. The solid–fluid coexistence line is of the E1
type at high T , and of the E2 type at lower T -values. For comparison, we have also reported as
asterisks the MC data for a 48 × 48 lattice. Straight lines are drawn through the symbols as a guide
for the eye. The inset shows a zoom on the triple-point region.

structure of the PDF. However, a good fluid structure is not necessarily accompanied by good
thermodynamic properties, and this is actually the case for the MSA of the t model.

5. DFT results: interfaces

Now that we have an accurate density functional for the bulk of the t345 system, we move on
to consider the structure of the interface between two coexisting bulk phases. Many similar
calculations have been carried out in the past (see, for instance, [11, 15, 20]) and, in fact, the
development of more and more careful DFT-based microscopic descriptions of the density
profile across an interface has been historically a recurrent leitmotif [2].

Here, two cases are analysed which will deserve a rather different treatment: the liquid–
vapour interface, i.e., the interface between two homogeneous phases, and the solid–fluid
interface, which instead separates a broken-symmetry phase from a homogeneous one.

5.1. Liquid–vapour coexistence

As a first example, we have studied the interface between the coexisting liquid and vapour
phases of the t345 model. This interface is assumed to lie perpendicularly to the y-direction.
Horizontal layers are labelled with an integer λ, which is taken to be zero at the ‘centre’ of
the interface. Since both phases are homogeneous, the density will be uniform along the x-
direction, its value being a constant, ρλ, for all sites i of the λth layer. Let ρl and ρv be the
densities of the coexisting phases at a given temperature T . Then, the common value µ of the
chemical potential is a′(ρv) = a′(ρl) (with a(ρ) defined at equation (23)). For these T and µ,
the grand potential per site of the bulk vapour or liquid is a(ρv) − µρv = a(ρl) − µρl . Given
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Figure 5. The phase diagram of the t3 model. Two distinct DFTs are contrasted through the
respective t3 phase diagrams: one theory uses the t model (MSA + WDA) as a reference and the
attractive interaction as a perturbation (◦; the freezing and melting lines are constructed through
the use of E1 at high T and of E2 at low T ); the other theory is MSA + RY (×). MC data for a
48 × 48 lattice and 2 × 105 equilibrium sweeps are shown as asterisks. The straight lines between
the points are plotted as a guide for the eye. The densities of the coexisting fluid and solid in the
t model are marked as downward-pointing arrows (long and short arrows are for the MSA + WDA
and the RY theory, respectively). The other arrows mark the MC estimates.

that, the generalized grand potential of the inhomogeneous system is

β�µ[ρ] = Nx

∑
λ

[ρλ ln ρλ + (1 − ρλ) ln(1 − ρλ) + ρλβ f exc(ρλ)]

+
1

2
Nx

∑
λ

ρλ

∑
j |i∈λ

n jβ 	v(|i − j |) g0

(
i − j,

ρλ + n j

2

)
− Nxβµ

∑
λ

ρλ, (25)

a functional of {ρλ} subject to the conditions ρλ → ρl for λ → −∞ and ρλ → ρv for λ → +∞.
As is usual practice [1], the g0-function of the inhomogeneous t system at the i − j lattice
separation is represented by the fluid PDF as calculated for a density which is the arithmetic
mean of the local densities in i and j . Finally, the grand-potential excess per surface particle
due to the interface can be estimated as σ(T ) = minn �[n], where

�[n] = 2β

Nx
{�µ[n] − �µ(ρv)}. (26)

The calculation of σ , which is nothing but the surface tension of the interface under
consideration, proceeds in two steps: one first optimizes a simple exponential ansatz [15]
and then refines the calculation via an unconstrained minimization that is accomplished in a
way analogous to that followed for the bulk.

We have chosen, for a demonstration, a temperature of t = 1.15, which is slightly above
the triple-point temperature. For this case, the shape of the liquid–vapour interface is plotted
in figure 7. In this picture, the dotted curve represents the best exponential profile, while the
continuous line is our final optimization. The surface tension is thus found to be σ = 0.0145.
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Figure 6. The homogeneous t model. Two distinct closures of the OZ relation are compared
through the profile of the reduced PDF at ρ = 0.1: MSA (◦ and dashed curve) and HNCA
(� and dotted curve). At the distances r20 = 7 of the 20th neighbours and r33 = √

91 of the 33th
neighbours, two symbols are reported for each curve (see the discussion following equation (C.4)).
The full dots are the MC data points for a 48 × 48 sample at βµ = −0.32 (here, the average
density is 〈ci 〉 = 0.099 95(1) over 5 × 105 equilibrium sweeps). Inset: a magnification of the
large-distance region. It is clearly apparent that the MSA PDF is of overall better quality than the
HNCA one.

By looking at figure 7, it appears that the deviation of the density profile from the exponential
law is actually minute.

5.2. Solid–vapour coexistence

We have first analysed the structure of the solid–fluid interface in the t3 lattice gas by the
RY theory, as built over the MSA DCF. To be specific, we consider a linear interface running
along x . Such an interface breaks the translational symmetry along y, thus causing the
sublattice densities to vary with y. Only very far from the interface do the densities recover the
bulk values, being those of the solid, say, far below the interface and those of the coexisting
fluid far above. The horizontal layers are labelled with an integer index, λ, which increases
upon moving from the solid to the fluid region, being zero at the interface. We choose e.g. odd
λ-values for those layers where particles are hosted in the T = 0 solid. At variance with the
bulk case, we must distinguish three sublattices since we generally expect different density
values at the interstitial sites pertaining to the even and to the odd layers. We call the sublattice
formed by the interstitial sites in the odd layers C, and the other B. Finally, A is the triangular
sublattice which is occupied in the T = 0 solid. We note that a C site has two adjacent A
sites on the same layer. Conversely, the two closest A sites of a B site stay on the (odd) layers
which are respectively below and above the (even) layer which the B site belongs to.

In the RY theory, the sublattice densities are drawn from equation (11) with µi = µ (given
by equation (A.5)) and a linear density functionality is assumed for the one-point DCF:

c(1)

i [n] = c1(ρ) +
∑

j

c2(i − j, ρ)(n j − ρ), (27)
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Figure 7. The t345 model (MSA + WDA + perturbation). The figure shows the density profile
across the interface between the coexisting liquid and vapour phases at t = 1.15. The starting point
of the functional minimization is an exponential profile (dotted curve); the open dots (which, for
clarity, are joined by a continuous curve) are the final outcome of the optimization. It turns out that
the difference between the two curves is very small.

where i can belong to A, B, or C. In particular, for the odd values of λ we have

c(1)(A, λ) = c1(ρ) + c2(0, ρ)(n A,λ − ρ) + 2c2(1, ρ)(nB,λ−1 + nC,λ + nB,λ+1 − 3ρ)

+ c2(2, ρ)(nC,λ−2 + 2nB,λ−1 + 2nB,λ+1 + nC,λ+2 − 6ρ)

+ 2c2(3, ρ)(n A,λ−2 + n A,λ + n A,λ+2 − 3ρ);
c(1)(C, λ) = c1(ρ) + c2(0, ρ)(nC,λ − ρ) + 2c2(1, ρ)(nB,λ−1 + n A,λ + nB,λ+1 − 3ρ)

+ c2(2, ρ)(n A,λ−2 + 2nB,λ−1 + 2nB,λ+1 + n A,λ+2 − 6ρ)

+ 2c2(3, ρ)(nC,λ−2 + nC,λ + nC,λ+2 − 3ρ), (28)

while, for the even values of λ,

c(1)(B, λ) = c1(ρ) + c2(0, ρ)(nB,λ − ρ)

+ c2(1, ρ)(n A,λ−1 + nC,λ−1 + 2nB,λ + n A,λ+1 + nC,λ+1 − 6ρ)

+ c2(2, ρ)(nB,λ−2 + n A,λ−1 + nC,λ−1 + n A,λ+1 + nC,λ+1 + nB,λ+2 − 6ρ)

+ 2c2(3, ρ)(nB,λ−2 + nB,λ + nB,λ+2 − 3ρ). (29)

Next, the RY density functional is derived from equation (A.6), where it must be noted that∑
i, j

c2(i − j, ρ)(ni − ρ)(n j − ρ) =
∑

i

(ni − ρ){c(1)

i [n] − c1(ρ)}

= Nx

2

∑
λ odd

(n A,λ − ρ){c(1)(A, λ) − c1(ρ)}

+ Nx

∑
λ even

(nB,λ − ρ){c(1)(B, λ) − c1(ρ)}

+
Nx

2

∑
λ odd

(nC,λ − ρ){c(1)(C, λ) − c1(ρ)}. (30)
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Figure 8. Top: the t3 model (MSA + RY), density profile across the solid–fluid interface at
t = 1.8036 (here, ρ f = 0.1000 and ρs = 0.1695). Bottom: the solid–fluid interface in the t model
(MSA + WDA). In both panels, the optimal exponential profile (dotted curve) is contrasted with
the outcome of an unconstrained �[n] minimization (open dots and continuous curve).

As is clear, the final expression of the functional (A.6) is rather cumbersome and, therefore,
we do not specify it here. Hence, we directly move to the numerical results.

We have considered just one temperature value, t = 1.8036. At this temperature, the
fluid and solid coexistence densities are ρ f = 0.1000 and ρs = 0.1695, respectively. Our
slab consisted of 61 layers, from λ = −30 to 30 (at the boundaries, we have set the sublattice
densities fixed to the solid values for λ < −30 and to the fluid value for λ > 30). To optimize
the interface shape, we proceed in two steps: first, we attempt a rough optimization by the
simple one-parameter ansatz [15]

n A,λ = ρ +
n A − ρ

1 + exp(λ/ l)
(λ odd);

nB,λ = ρ +
nB − ρ

1 + exp(λ/ l)
(λ even);

nC,λ = ρ +
nB − ρ

1 + exp(λ/ l)
(λ odd).

(31)

The parameter l is chosen in such a way as to make (A.6) as low as possible. With that profile
as a starting point, we run an iterative procedure, similar to that used for the bulk, for the
unconstrained minimization of �µ[ρ] − �µ(ρ f ). In the end, we get the density profile shown
in figure 8 (top). At this temperature, the surface tension, given by equation (26), takes the
value σ = 0.0740(1).

Next, we move to the t model, as described by the WDA theory outlined in appendix C.
From equation (A.5), we obtain the following expression for �[n]:

�[n] =
∑
λ odd

[
n A,λ ln

n A,λ

ρv

+ (1 − n A,λ) ln
1 − n A,λ

1 − ρv

+ nC,λ ln
nC,λ

ρv

+ (1 − nC,λ) ln
1 − nC,λ

1 − ρv

]
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+ 2
∑

λ even

[
nB,λ ln

nB,λ

ρv

+ (1 − nB,λ) ln
1 − nB,λ

1 − ρv

]

+ c1(ρv)
∑
λ odd

(n A,λ + nC,λ − 2ρv)

+ 2c1(ρv)
∑

λ even

(nB,λ − ρv) +
∑
λ odd

[n A,λβ f exc(n̄ A,λ)

+ nC,λβ f exc(n̄C,λ) − 2ρvβ f exc(ρv)]

+ 2
∑

λ even

[nB,λβ f exc(n̄B,λ) − ρvβ f exc(ρv)]. (32)

For λ even, for example, the only weighted density that matters is n̄B,λ, which is defined in
terms of all densities as

n̄B,λ =
∑

j

n jw(i − j, n̄B,λ), (33)

where i is any particular site on the λth layer. For odd values of λ, one can analogously
define n̄ A,λ and n̄C,λ. If we adopt the WDA method of Tarazona, then a result similar to
equation (A.15) is obtained, giving n̄B,λ in terms of the auxiliary quantities

n̄kB,λ =
∑

j

n jwk(i − j) (with k = 0, 1, 2). (34)

The explicit expression of (34) obviously requires the careful consideration of lattice sites j
lying progressively further from the reference site i . As noted in appendix B, a sum such
as (34) should in practice be truncated after a certain value of |i − j |, and we have chosen this
to be the distance of the 20th neighbours. Even so, the final formula takes too many lines to
be specified here, and is therefore omitted.

The actual minimization of �[n] proceeds in a way analogous to the bulk case, described
in appendix C. However, the formulae for the density derivatives of n̄ A,λ, n̄B,λ, and n̄C,λ are
much more involved for the surface than for the bulk case. The outcome for the density profile
across the interface is shown in figure 8 (bottom). Its shape is very similar to that of the
t3 model, but the surface tension is much larger, our best result being σ = 0.3182.

We have finally considered the solid–vapour interface in the t345 model. In particular, we
are interested in temperature values that are just below the triple-point temperature. In such
conditions, and as long as surface melting occurs, a thin liquid-like film appears at the interface
between the solid and the vapour. The functional �[n] for the t345 system is the same as for
the hard-core model plus the contribution coming from the attractive part of the potential:

�[n] = �(t)[n] −
(

ρv

∑
n

znβvn g0(n, ρv) +
ρ2

v

2

∑
n

znβvn
dg0(n, ρv)

dρv

)

×
[∑

λ odd

(n A,λ + nC,λ − 2ρv) + 2
∑

λ even

(nB,λ − ρv)

]

+ 1
2

∑
λ odd

[
n A,λ

∑
j |i∈A,λ

n jβ 	v(|i − j |) + nC,λ

×
∑

j |i∈C,λ

n jβ 	v(|i − j |) − 2ρ2
v

∑
n

znβvn g0(n, ρv)

]

+
∑

λ even

[
nB,λ

∑
j |i∈B,λ

n jβ 	v(|i − j |) − ρ2
v

∑
n

znβvn g0(n, ρv)

]
. (35)
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The minimization of (35) is carried out along the same lines as for the reference t model, the
only difference being in the novel density functionality of �, not in the way the weighted
density and its derivatives are calculated from the sublattice densities.

However, we expect a number of oddities to follow from (35) because of the different
functional forms of the solid and fluid free energies. In particular, the minimization of (35)
cannot produce a density profile which, on the λ > 0 side of the interface, smoothly drops
into the vapour one. In fact, contrary to the situation for the cases examined before, �[n]
does not identically vanish when ni takes the constant value ρv (even larger is the difference,
at the triple point, between �(s)

µ (ρl) and �
( f )
µ (ρv), meaning that the obvious prerequisite for

observing a genuine surface melting is not met). This mismatch can be quantified in terms
of the difference between ρv and the homogeneous solution ρ∞ to �(s)

µ (ρ∞) = �
( f )
µ (ρv). At

t = 1.14, i.e., just below the triple-point temperature, we find ρv = 0.0356 and ρ∞ = 0.0288
(the difference being smaller at a lower T ).

A way out of this impasse could be that of imposing ρ∞ as boundary value for λ → +∞,
while maintaining the form (35) for �[n]. Obviously, in order to enforce this condition, the
initial ansatz must be accordingly modified into

n A,λ = ρ∞ +
n A − ρ∞

1 + exp(λ/ l)
(λ odd);

nB,λ = ρ∞ +
nB − ρ∞

1 + exp(λ/ l)
(λ even);

nC,λ = ρ∞ +
nB − ρ∞

1 + exp(λ/ l)
(λ odd).

(36)

We are perfectly conscious that the solution proposed here just represents a stratagem for
making equation (35) suited to also describe the solid surface. A correct description would in
fact need a single functional for all the phases.

For future reference,we plot in figure 9 (top) the MC outcome for the x-integrated densities
of the t345 model in a 60 × 128 slab with periodic boundary conditions along x and fixed
densities at the y-boundary. To be precise, the densities are kept fixed at the T = 0 solid
and vapour values in the eight layers lying on the extreme left and right of the picture. The
temperature is t = 0.87, i.e., slightly below the exact triple point, whereas the chemical
potential has been adjusted in order to attain phase coexistence. The occurrence of surface
melting in the t345 model is demonstrated by the structure of the interface in the central part
of the picture, which is compatible with that of a ‘modulated’ liquid which strongly feels the
underlying crystal ordering.

In figure 9 (bottom), we have plotted the density profile across the solid–vapour interface
at t = 1.14, as calculated through the minimization of �[n]. From a look at this figure, we see
that there are a few layers, interposed between the solid and the vapour, where the values of
the sublattice densities are intermediate between those of the coexisting solid and vapour and
close, on average, to that of the incoming liquid (�0.121, at t = 1.15). Interestingly, further
evidence (see figure 10) supports the surface-melting interpretation, namely the existence of
a maximum in nB,λ near λ = 0, and of another, less pronounced, in nC,λ. These maxima are
neither present in the initial profile (36) nor occur in the interface profiles of the t and t3 models.
Anyway, the thickness of the molten layer appears to be strongly underestimated by our DFT as
compared to MC. Moreover, the comparison with another DFT theory of surface melting [11]
also actually leads us to qualify our results as rather poor.

We are aware that the use of ad hoc boundary conditions in our DFT treatment of the
solid–vapour interface may cast some doubts on the general significance of the results plotted
in figures 9 (bottom) and 10. Certainly, we are not allowed to draw any reasonable estimate
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Figure 9. Top: the MC density profile across the solid–vapour interface of a t345 lattice system at
t = 0.87, i.e., just below the triple-point temperature. To reach coexistence, the chemical potential
is set equal to µ = −4.479V . For a simulation box of 60 × 128, as many as 2 × 106 equilibrium
sweeps were produced. The dotted line marks the average density over couples of adjacent layers.
Near the centre of the picture, the maximum in the interstitial density (which is the bottom of
the modulation) is the sign of a liquid-like behaviour. Bottom: DFT results for the t345 model
(MSA + WDA + perturbation). The density profile across the solid–vapour interface is shown at
t = 1.14: optimal exponential profile (dotted curve) versus unconstrained �[n] minimization
(open dots and continuous curve).

of the surface tension from the calculation that we have presented, which is quantitatively
untenable. Notwithstanding the crudeness of our method, we nonetheless think that figures 9
(bottom) and 10 do genuinely capture the behaviour of the t345 system.

6. Conclusions

In this paper, we have used the lattice-DFT method to analyse the phase behaviour of a 2D
lattice-gas model (named t345) which exhibits a solid, a liquid, and a vapour phase. Particles
reside on a triangular lattice: occupation of nearest- and next-nearest-neighbour sites of a
particle is forbidden, while the pair attraction extends from third to fifth neighbours.

We have built up an accurate solid structure for the purely hard-core model by working
with the WDA of Tarazona, while the remaining part of the t345 potential has been treated as
a mean field. This method is expected to provide good results both at very low and at very
high temperatures, and to offer a not too bad interpolation in between.

In fact, our theory passes the crucial test of predicting the existence of a liquid phase in the
t345 model. In particular, the ratio of the triple to the critical temperature is found to reproduce
the exact value to within 2%. Another successful result is the prediction, in agreement with
MC simulation, of the disappearance of the liquid phase when the range of the attraction is
reduced to embrace third neighbours only. The main drawback of the theory is in the estimate
of the freezing as well as of the melting density which, in the worst case, fall short of the
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Figure 10. The t345 model (MSA + WDA + perturbation). The profile of nB,λ and nC,λ versus
λ for the same solid–vapour interface as is represented in figure 9 (bottom). The unconstrained
minimum-�[n] profile (open dots and continuous curves) is compared with the best exponential
ansatz (dotted curve). The maxima near λ = 0 are a sign of the local onset of a liquid-like behaviour.

(This figure is in colour only in the electronic version)

exact values by about 35%. This inconvenience should be ascribed to, besides the crudeness
of the MFA approach (also worsened by the low system dimensionality), also the low quality
of the MSA for the hard-core fluid (the HNCA is not viable since it does not converge even at
moderate densities).

Having produced a qualitatively sound bulk theory, we have moved to a description of the
interface structure in the t345 model. The same functional as was built up for the bulk system
has been used to describe the coexistence between the solid and the vapour phases. Actually,
the use of slightly different functional forms for the generalized grand potentials of the solid
and of the vapour forces us to introduce a spurious boundary condition on the vapour side of
the interface. If we allow for this artifice, we do in fact observe the appearance, just below the
triple-point temperature, of a very thin liquid-like layer in between the solid and the vapour,
which is the sign of the occurrence of surface melting in the system. However, it should be
admitted that this slight evidence is not comparable, as for quality, to e.g. that provided by the
3D continuum DFT of [11].

Appendix A. The lattice DFT of freezing—generalities

In this appendix, we first derive a general expression for the generalized grand potential of an
inhomogeneous lattice-gas system; this is then used for formulating a lattice DFT of freezing.
In particular, we show how to adapt the WDA of Tarazona [3] to a lattice problem.

Let us suppose that we know the DCF c(2)

i j of a lattice system and the value of its Fexc[n]
for a given density profile n0. Let nλi = n0i + λ	ni , with 	ni = ni − n0i and 0 � λ � 1. It
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then follows from the first of equations (10) that

β Fexc[n] = β Fexc[n0] −
∑

i

	ni

∫ 1

0
dλ c(1)

i [nλ]. (A.1)

The functional c(1) can be similarly obtained, using the second of equations (10), as an integral
of c(2), which eventually yields the exact formula:

β Fexc[n] = β Fexc[n0] −
∑

i

c(1)
i [n0] 	ni −

∑
i, j

	ni 	n j

∫ 1

0
dλ

∫ λ

0
dλ′ c(2)

i j [nλ′], (A.2)

where the first two terms on the rhs of (A.2) identically vanish when choosing n0 = 0. Actually,
an infinite series of terms is hidden behind the last term of equation (A.2), each containing
an order of the DCF as calculated for n0. In practice, one could stop this infinite regression
at the second order by approximating c(2)

i j [nλ′] with c(2)
i j [n0], and this gives the so-called RY

theory [18].
Using equation (A.2), the excess free energy per particle of a fluid with density ρ can be

generally written as

β f exc(ρ) = − 1

ρ

∫ ρ

0
dρ ′ (ρ − ρ ′)c̃2(0, ρ ′), (A.3)

whereasρ f exc(ρ) is the excess free energy per site. The function c2 is calculated by augmenting
the OZ relation with a closure, that is a further relation between the total and the DCF. We also
quote the expression for c1:

c1(ρ) = −β f exc(ρ) − ρβ f exc′(ρ), (A.4)

from which the chemical potential follows through equation (11):

βµ = ln
ρ

1 − ρ
− c1(ρ). (A.5)

In order to study the coexistence between the solid and the fluid, we must require equal
values of T and µ for the two phases. Given equation (A.5), the departure 	�[n] =
�µ[n] − �µ(ρ) of the generalized grand potential of the solid from that of the fluid can
be written as

β 	�[n] =
∑

i

[
ni ln

ni

ρ
+ (1 − ni ) ln

1 − ni

1 − ρ

]

+ c1(ρ)
∑

i

(ni − ρ) + β Fexc[n] − Nρβ f exc(ρ), (A.6)

N being the total number of lattice sites. Every different choice of Fexc[n] defines a class of
(approximate) DFTs. The simplest choice, yet rarely a quantitatively accurate one, is the RY
theory, which leads to

β 	�[n] =
∑

i

[
ni ln

ni

ρ
+ (1 − ni ) ln

1 − ni

1 − ρ

]
− 1

2

∑
i, j

c2(i − j, ρ)(ni − ρ)(n j − ρ). (A.7)

The RY theory already represents a considerable improvement over the ordinary MFA,
which is tantamount to assuming c2(i − j, ρ) = 0 for i − j inside the core region, and
c2(i − j, ρ) = −βv(|i − j |) outside the core. At variance with the MFA, the RY theory uses
a DCF which is adjusted to fit the homogeneous OZ relation as supplemented with a proper
closure. For instance, in the MSA, one requires that g(i − j, ρ) = 0 inside the core, while still
assuming c2(i − j, ρ) = −βv(|i − j |) outside this region. A further possibility would be the
PYA, which assumes c2(i, ρ) = g(i, ρ)[1 − exp(βv(|i |))].
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A more accurate, non-perturbative expression for Fexc[n] is obtained by the so-called
WDA [3, 4], which amounts to approximating the exact equation (A.2) for n0 = 0 as

Fexc[n] ≈ Fexc
W D A[n] ≡

∑
i

ni f exc(n̄i ), (A.8)

where the weighted density n̄i is implicitly defined by

n̄i =
∑

j

n jw(i − j, n̄i). (A.9)

The weighted density is required to be constant, i.e., n̄i = ρ, for a homogeneous system of
density ρ (hence, w̃(0, ρ) = ∑

j w(i − j, ρ) = 1 for any i ); moreover, the weight function w

must be such that the DCF of the fluid be recovered in the homogeneous limit:

−β
∂2 Fexc

W D A

∂ni ∂n j

∣∣∣∣
ni =ρ

= c2(i − j, ρ). (A.10)

With the above requirements, the approximation obtained for Fexc[n] is better than any
truncated DCF expansion [4].

Using simple calculus, one can translate equation (A.10) into a differential equation for
the Fourier transform of w(i, ρ):

− 1

β
c̃2(q, ρ) = 2 f exc′(ρ)w̃(q, ρ) + ρ f exc′′(ρ)w̃2(q, ρ) + 2ρ f exc′(ρ)w̃(q, ρ)w̃′(q, ρ). (A.11)

Although equation (A.11) can be numerically solved for any q and ρ [4], we here adopt the
simpler recursive method of Tarazona [3], which considers a series expansion of w̃(q, ρ) in
powers of the density. If we stop at the second order, all we need to determine is

w(i, ρ) = w0(i) + ρw1(i) + ρ2w2(i) (A.12)

from the knowledge of the lower-order terms in the two expansions

f exc(ρ) = f1ρ + f2ρ
2 + f3ρ

3 + · · ·
c2(i, ρ) = χ0(i) + ρχ1(i) + ρ2χ2(i) + · · · . (A.13)

We notice that equation (A.3) allows us to express fk+1 (k = 0, 1, 2, . . .) in terms of χk as

β fk+1 = − 1

(k + 1)(k + 2)

∑
i

χk(i). (A.14)

Upon inserting equations (A.12) and (A.13) into (A.11) and equating term by term, we
eventually obtain the general formulae:

w0(i) = −χ0(i)

2β f1
;

w̃1(q) = − χ̃1(q) + 4β f2w̃0(q) + 2β f2w̃0
2(q)

2β f1(1 + w̃0(q))
;

w̃2(q)=− χ̃2(q) + 6β f3w̃0(q) + 4β f2w̃1(q) + 6β f3w̃0
2
(q) + 8β f2w̃0(q)w̃1(q)+2β f1w̃1

2
(q)

2β f1(1 + 2w̃0(q))
.

(A.15)

Given the weight function, the weighted density is explicitly determined from
equation (A.9) in terms of the ni as

n̄i = 2n̄0i

1 − n̄1i +
√

(1 − n̄1i )2 − 4n̄0i n̄2i

, (A.16)

where n̄ki = ∑
j n jwk(i − j) for k = 0, 1, 2. In practice, one uses equation (A.16) as part

of the iterative procedure by which the DFT minimum principle is implemented numerically
(see the details in appendix B). A practical demonstration of the WDA method will be given
in appendix C.
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Appendix B. RY theory for the t3 model

We hereby describe in detail how to work out a RY DFT for the t3 model. Our first task is
to determine the DCF of the homogeneous system. We have chosen to solve numerically the
OZ relation with the MSA closure. Let ax = x̂ and ay = (

√
3/2)ŷ be the primitive vectors of

the triangular lattice (hereafter, we assume a unit lattice constant). Then, the reciprocal-lattice
vectors are bx = 2π x̂ and by = (4π

√
3/3)ŷ. Any sum over Born–Von Karman vectors (see

footnote 2) is written, in the infinite-size limit, as an integral over the first Brillouin zone:

1

N

∑
q

f (q) →
√

3

2

∫
B Z

d2q

(2π)2
f (q) =

√
3

2

∫ π

−π

dqx

2π

∫ 2π
√

3/3

−2π
√

3/3

dqy

2π
f (qx, qy)

=
∫ π

−π

dqx

2π

∫ π

−π

dq ′
y

2π
f

(
qx,

2
√

3

3
q ′

y

)
. (B.1)

For the t3 fluid, the MSA assumes: (i) C(3) = c2(3) = −βv3 and C(n) = 0 for all n > 3
shells; (ii) h(0) = h(1) = h(2) = −1. From (ii), three equations are derived for the unknown
quantities C(0), C(1), and C(2). For instance, the first of these is obtained by plugging the
OZ relation (15) into the expression h(0) = (1/N)

∑
q h̃q . After a few manipulations, we

eventually obtain the following set of equations:

2ρ(1 − ρ)C(3) = z3

(2π)2

∫ π

−π

dqx

∫ π

−π

dqy
1

1 − z1 f1(qx, qy) − z2 f2(qx, qy) − z3 f3(qx, qy)
;

−6ρ2C(3) = z3

(2π)2

∫ π

−π

dqx

∫ π

−π

dqy
f1(qx , qy)

1 − z1 f1(qx , qy) − z2 f2(qx , qy) − z3 f3(qx, qy)
;

−6ρ2C(3) = z3

(2π)2

∫ π

−π

dqx

∫ π

−π

dqy
f2(qx, qy)

1 − z1 f1(qx , qy) − z2 f2(qx , qy) − z3 f3(qx, qy)
,

(B.2)

where z1 = 2ρC(1)/(1−ρC(0)), z2 = 2ρC(2)/(1−ρC(0)), and z3 = 2ρC(3)/(1−ρC(0))

are auxiliary unknowns. Moreover,

f1(qx, qy) = cos qx + 2 cos( 1
2 qx) cos qy;

f2(qx , qy) = cos(2qy) + 2 cos( 3
2 qx) cos qy;

f3(qx, qy) = cos(2qx) + 2 cos qx cos(2qy).

(B.3)

For a given ρ, equations (B.2) are to be solved recursively: starting from estimates of z1, z2,
and z3, these quantities are gradually adjusted until the rhs of equations (B.2) becomes equal
to the quantity on the respective lhs with a tolerance smaller than 10−8.

Once the DCF has been determined, we can use e.g. the RY theory to construct the
generalized grand potential of the t3 model. We call the triangular sublattice that is occupied
in the T = 0 crystal A, while B includes the rest of the lattice. Then, the independent
density variables are the two sublattice occupancies, n A and nB , while the solid density is
ρs = (n A + 3nB)/4. The density functional that is to be minimized reads

4β 	�(n A, nB )

N
= n A ln

n A

ρ
+ (1 − n A) ln

1 − n A

1 − ρ
+ 3

[
nB ln

nB

ρ
+ (1 − nB) ln

1 − nB

1 − ρ

]

− 1
2 [(c2(0) + 6c2(3))(n A − ρ)2 + 12(c2(1) + c2(2))(n A − ρ)(nB − ρ)

+ 3(c2(0) + 4c2(1) + 4c2(2) + 6c2(3))(nB − ρ)2], (B.4)

where we have omitted to indicate the ρ-dependence of the c2-values. If, after minimization,
	� happens to be negative, then the solid phase is stable; otherwise the fluid will overcome
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the solid in stability. As a result, the locus of the 	� zeros allows us to draw the fluid–solid
coexistence line in the T –ρ plane.

In order to find the minimum of 	�, at least two different strategies can be pursued whose
efficiencies turn out, in fact, to be comparable. The first method is to lay down, starting from
somewhere in the {n A, nB} space, a fictitious relaxational (steepest-descent) dynamics, i.e.,

n A(t + 	t) = n A(t) − 	t
∂ 	�

∂n A
(t) (B.5)

and similarly for nB , where 	t is a conveniently small number. In the long run, the sublattice
densities eventually stabilize, and this will signal that a minimum of 	� has been reached
(note that there is always the possibility of getting stuck in a local minimum; so, one should
check the nature of the minimum with different 	t values and initial conditions).

The other method is to solve, by a self-consistent procedure, the non-linear equations for
the densities:

n−1
A = 1 +

1 − ρ

ρ
exp[−(c2(0) + 6c2(3))(n A − ρ) − 6(c2(1) + c2(2))(nB − ρ)];

n−1
B = 1 +

1 − ρ

ρ
exp[−2(c2(1) + c2(2))(n A − ρ)

− (c2(0) + 4c2(1) + 4c2(2) + 6c2(3))(nB − ρ)].

(B.6)

In order to reach a better convergence, we have resorted to a mixing scheme: at the kth step in the
iteration, we use the inverse of the rhs of each equation (B.6) to obtain a trial estimate (denoted
by a hat) of the densities at the (k + 1)th step. Then, we assume n(k+1)

A = (1 − q)n(k)
A + qn̂(k+1)

A
(and similarly for nB ), where q is a small positive number.

The RY freezing and melting lines of the t3 model are shown in figure 5 as dotted lines
in the ρ–T plane. Since there is only one minimum in the fluid generalized grand potential,
the t3 system shows, according this theory, two phases only—fluid and triangular solid, with a
density gap becoming narrower and narrower with increasing temperature. In the same figure,
we have marked with arrows the densities of the coexisting fluid and solid in the t model,
namely ρ f = 0.1495 and ρs = 0.1600 (see below). In fact, the t model can be viewed as the
infinite-temperature limit of the t3 model.

The MSA equations for the t model can be easily adapted from those of the t3 model. An
important thing to notice is that the iterative procedure by which the MSA is solved usually fails
to converge beyond a certain density ρup which, for the t model, is slightly above 0.21. This
is a well-known problem in the field of integral equations of classical fluids which, however,
is not particularly dangerous in view of the fact that the fluid phase loses its stability against
the solid well below ρup. This notwithstanding, we might have the need to extend, as required
by the forthcoming WDA of appendix C, the definition of f exc(ρ) well beyond ρup (and even
beyond 0.25). To this end, since the only obvious constraint to fulfil is regularity, the possible
solutions are many. Following the proposal advanced in [21] for hard discs, we could assume,
for instance, the (metastable-) fluid pressure to be exactly given, beyond ρ = 0.21, as

β P

ρ
= 1 + a′η + b′η2 + c′η3 + d ′η4

(1 − η)2
, (B.7)

where η = (2π
√

3/3)ρ ≡ αρ is the packing fraction (corresponding to a hard-core diameter
of 2), while a′, b′, c′, and d ′ are free parameters. The excess free energy will follow from

β f exc(ρ) =
∫ ρ

0

(
β P(t)

t
− 1

)
dt

t
, (B.8)
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which, through the density derivative of equation (A.5), is easily proved to be equivalent to
equation (A.3). Upon inserting equation (B.7) into (B.8), we eventually arrive at the following
analytic form:

β f exc(ρ) = aρ + bρ2 +
cρ

1 − αρ
+ d ln(1 − αρ), (B.9)

with other parameters a, b, c, and d . The latter are fixed by requiring a smooth behaviour at
ρ = 0.21.

The problem with the above extrapolation (called E1) is that (B.9) blows up to infinity for
ρ = 1/α � 0.276. This could be a serious inconvenience if one needs to calculate f exc(ρ)

beyond 1/α. In this case, we resort to a simpler extrapolation (called E2), which merely
expresses f exc(ρ) as a fourth-order polynomial beyond ρ = 0.21.

Appendix C. WDA for the t model

In the present appendix, we show how to build up a WDA theory for the t model.
Upon inserting (A.8) into (A.6), and specializing to the t model, we readily obtain

4β 	�(n A, nB )

N
= n A ln

n A

ρ
+ (1 − n A) ln

1 − n A

1 − ρ
+ 3

[
nB ln

nB

ρ
+ (1 − nB) ln

1 − nB

1 − ρ

]

+ c1(ρ)(n A + 3nB − 4ρ) + n Aβ f exc(n̄ A) + 3nBβ f exc(n̄B) − 4ρβ f exc(ρ).

(C.1)

If we impose the vanishing of the partial derivatives of (C.1), we get the equations for n A and
nB :

n−1
A = 1 +

1 − ρ

ρ
exp

[
c1(ρ) + β f exc(n̄ A) + n Aβ f exc′(n̄ A)

∂ n̄ A

∂n A
+ 3nBβ f exc′(n̄B)

∂ n̄B

∂n A

]
,

n−1
B = 1 +

1 − ρ

ρ
exp

[
c1(ρ) + β f exc(n̄B) +

1

3
n Aβ f exc′(n̄ A)

∂ n̄ A

∂nB
+ nBβ f exc′(n̄B)

∂ n̄B

∂nB

]
.

(C.2)

In the above equations, the weighted densities n̄ A and n̄B are calculated from equation (A.16).
As for their density derivatives, it follows from the original definition (A.9) that

∂ n̄ A

∂n A
= (1 − n̄1A − 2n̄2An̄ A)−1

(
∂ n̄0A

∂n A
+ n̄ A

∂ n̄1A

∂n A
+ n̄2

A

∂ n̄2A

∂n A

)
, (C.3)

and similarly for other derivatives. In equation (C.3), n̄k A = ∑
j n jwk(i − j), with i ∈ A and

k = 0, 1, 2. We thus have, for instance,

∂ n̄k A

∂n A
=

∑
j∈A|i∈A

wk(i − j) = wk(0) + 6wk(3) + 6wk(6) + 6wk(8)

+ 12wk(13) + 6wk(15) + 6wk(19) + · · · , (C.4)

where we have used the shell number (rather than the distance) as the argument for wk .
Obviously, in order to make the whole procedure computationally feasible, the sum in
equation (C.4) (and any other sum of the same kind) must be truncated at a certain distance,
and we have chosen to stop summing beyond the distance (=7) of the 20th neighbours. This
is not a problem, however, since the wk-functions rapidly drop to zero when increasing the
distance from the reference site.

We remark that a novel feature emerges in the behaviour of wk(i) right when we reach the
distance of the 20th neighbours, which is not observed at the smaller distances. Two different
groups of such neighbours are, in fact, to be distinguished: six of them are symmetry related,
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as are the other twelve. But the value of wk for a site of the first group is different from that
calculated for a neighbour of the second group (hence we have a wk(20a) and a wk(20b)). We
should wait until the 33th-neighbour shell (at a distance of

√
91) to observe this feature repeated

again. Hence, notwithstanding that the potential shows radial symmetry, wk is not spherically
symmetric and this is why, on a lattice, particular care must always be paid to distinguishing
translational from spherical symmetry, although the exceptions to radial symmetry are, in a
sense, rare [22]. Note that the reduced PDF behaves similarly to wk , i.e., g(i − j, ρ) is not
spherically symmetric either.
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